# CSE 332 INTRODUCTION TO VISUALIZATION

## HIGH-DIMENSIONAL DATA

## **KLAUS MUELLER**

### COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

| Lecture | Торіс                                                       | Projects      |
|---------|-------------------------------------------------------------|---------------|
| 1       | Intro, schedule, and logistics                              |               |
| 2       | Applications of visual analytics, data types                |               |
| 3       | Data sources and preparation                                | Project 1 out |
| 4       | Data reduction, similarity & distance, data augmentation    |               |
| 5       | Dimension reduction                                         |               |
| 6       | Introduction to D3                                          |               |
| 7       | Visual communication using infographics                     |               |
| 8       | Visual perception and cognition                             | Project 2 out |
| 9       | Visual design and aesthetic                                 |               |
| 10      | D3 hands-on presentation                                    |               |
| 11      | Cluster analysis                                            |               |
| 12      | Visual analytics tasks and design                           |               |
| 13      | High-dimensional data VIS: linear projections               | Project 3 out |
| 14      | High-dimensional data VIS: optimized layouts                |               |
| 15      | Visualization of spatial data                               |               |
| 16      | Midterm                                                     |               |
| 17      | Illumination and isosurface rendering                       |               |
| 18      | Scientific visualization                                    |               |
| 19      | Non-photorealistic and illustrative rendering               | Project 4 out |
| 20      | Midterm discussion                                          |               |
| 21      | Principles of interaction                                   |               |
| 22      | Visual analytics and the visual sense making process        |               |
| 23      | Visualization of graphs and hierarchies                     |               |
| 24      | Visualization of time-varying and streaming data            | Project 5 out |
| 25      | Maps                                                        |               |
| 26      | Memorable visualizations, visual embellishments             |               |
| 27      | Evaluation and user studies                                 |               |
| 28      | Narrative visualization, storytelling, data journalism, XAI |               |

# UNDERSTANDING HIGH-D OBJECTS

Feature vectors are typically high dimensional

- this means, they have many elements
- high dimensional space is tricky
- most people do not understand it
- why is that?
- well, because you don't learn to see high-D when your vision system develops

Object permanence (Jean Piaget)

- the ability to create mental pictures or remember objects and people you have previously seen
- thought to be a vital precursor to creativity and abstract thinking

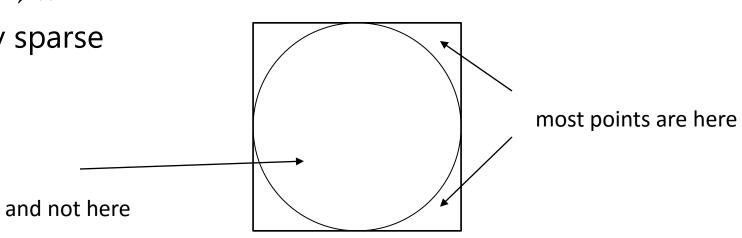
# HIGH-D SPACE IS TRICKY

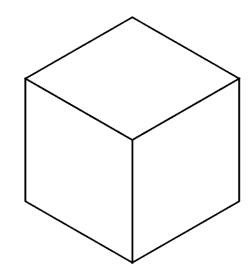
The curse of dimensionality

As  $n \to \infty$ 

- Cube: side length *l*, diagonal *d*, volume *V*
- $V \to \infty$  for l > 1
- $V \rightarrow 0$  for l < 1
- *V* = 0 for *l* = 1
- $d \rightarrow \infty$

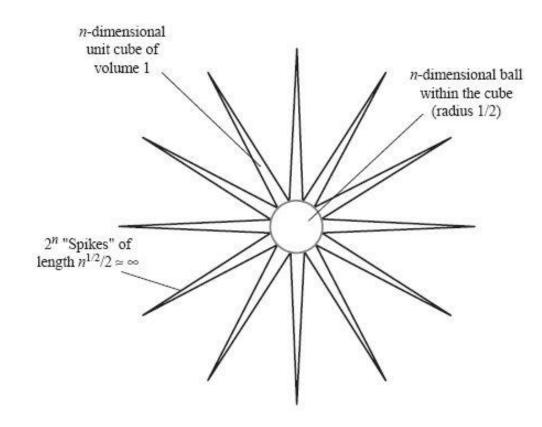
and very sparse





## HIGH-D SPACE IS TRICKY

## Essentially hypercube is like a "hedgehog"



## CURSE OF DIMENSIONALITY

Points are all at about the same distance from one another

- concentration of distances
- fundamental equation (Bellman, '61)

$$\lim_{n \to \infty} \frac{Dist_{\max} - Dist_{\min}}{Dist_{\min}} \to 0$$

- so as *n* increases, it is impossible to distinguish two points by (Euclidian) distance
  - unless these points are in the same cluster of points

## SPARSENESS DEMONSTRATION

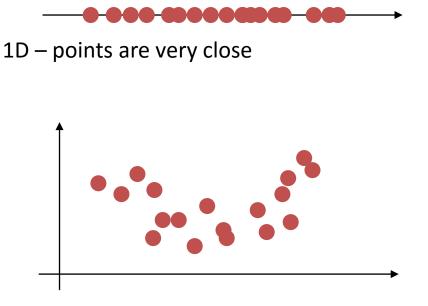
Space gets extremely sparse

- with every extra dimension points get pulled apart further
- distances become meaningless

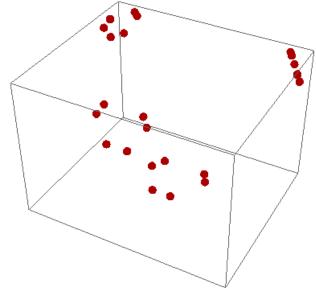
## SPARSENESS DEMONSTRATION

### Space gets extremely sparse

- with every extra dimension points get pulled apart further
- distances become meaningless



2D – points spread apart



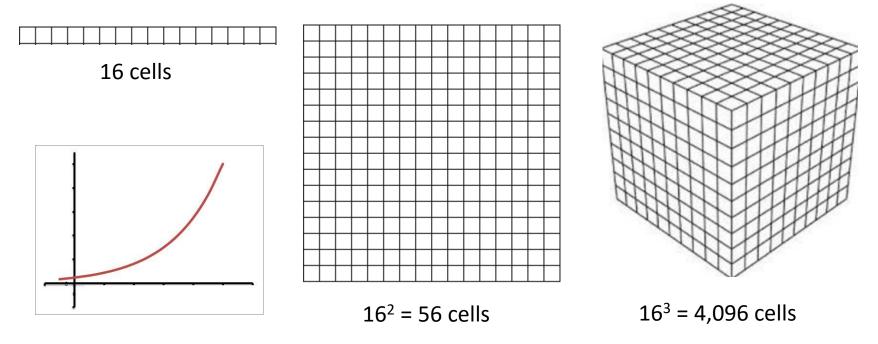
3D – getting even sparser

4D, 5D, ... – sparseness grows further

## Space and Memory Management

Indexing (and storage) also gets very expensive

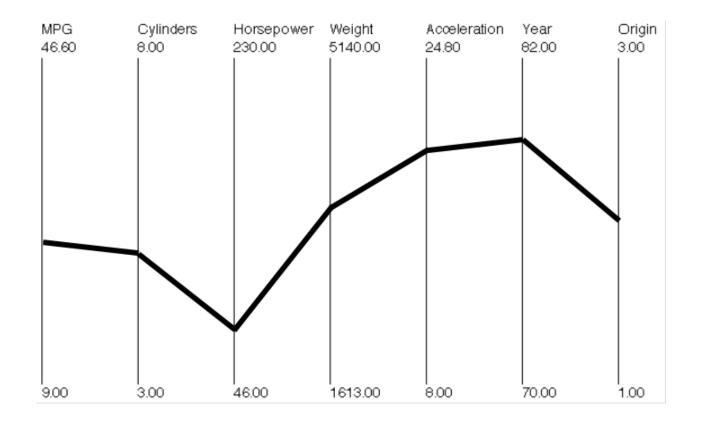
exponential growth in the number of dimensions



- 4D: 65k cells 5D: 1M cells 6D: 16M cells 7D: 268M cells
- keep a keen eye on storage complexity

## PARALLEL COORDINATES

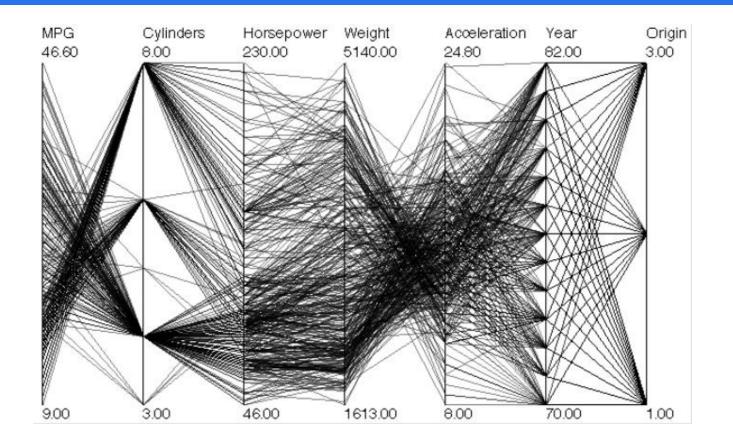
## PARALLEL COORDINATES - 1 CAR



The N=7 data axes are arranged side by side

in parallel

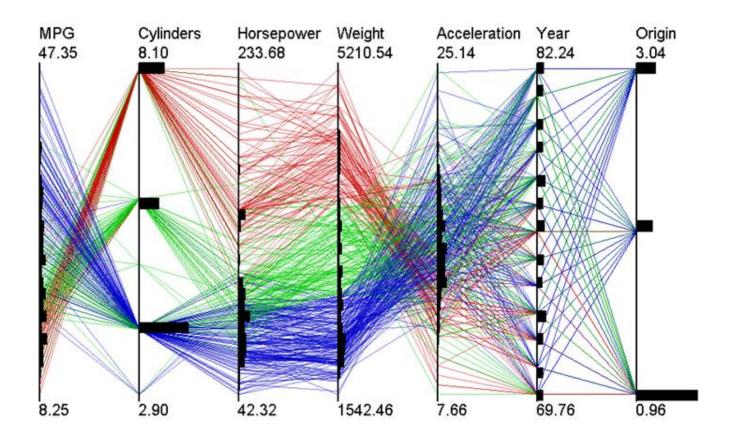
## PARALLEL COORDINATES - 100 CARS



Hard to see the individual cars?

- what can we do?
- Socrative by MasteryConnect

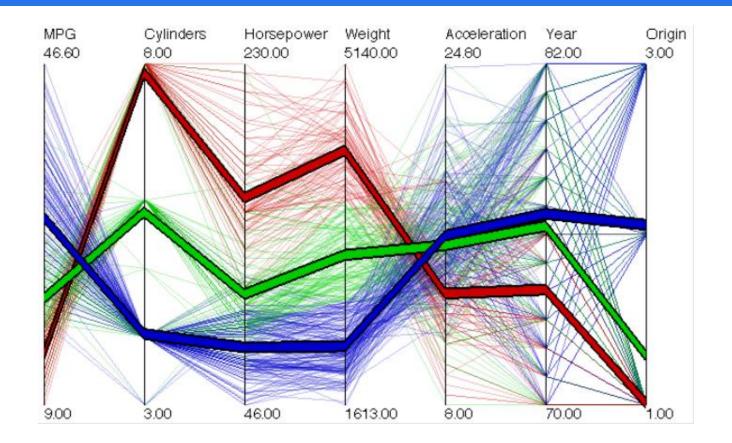
## PARALLEL COORDINATES - 100 CARS



Grouping the cars into sub-populations

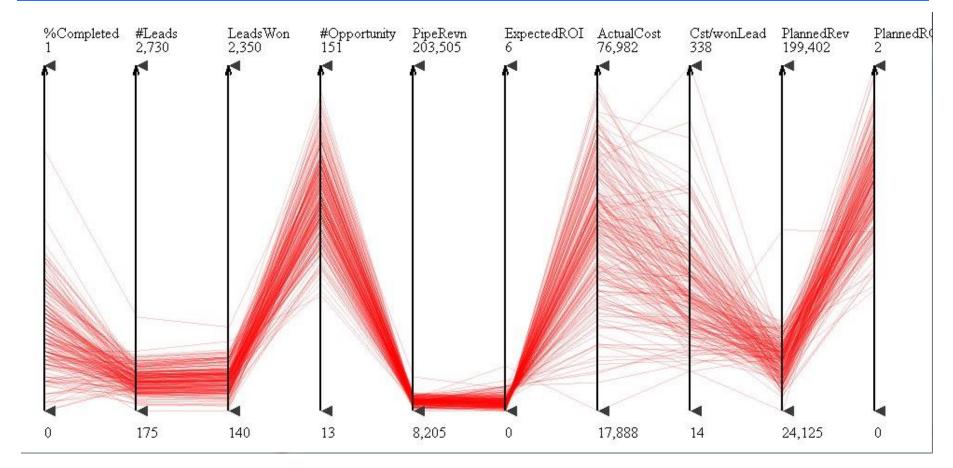
- a clustering operation
- an be automated or interactive (put the user in charge)

## PC WITH MEAN TREND

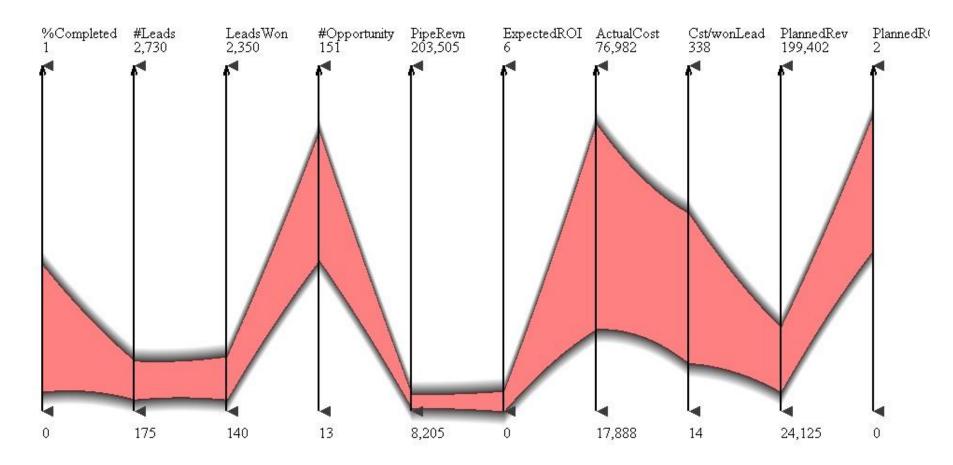


Computes the mean and superimposes it onto the lines

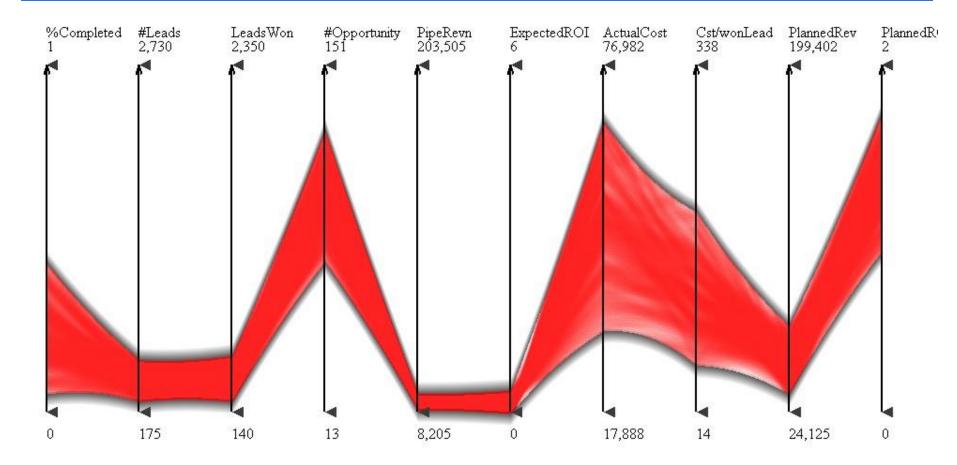
allows one to see trends



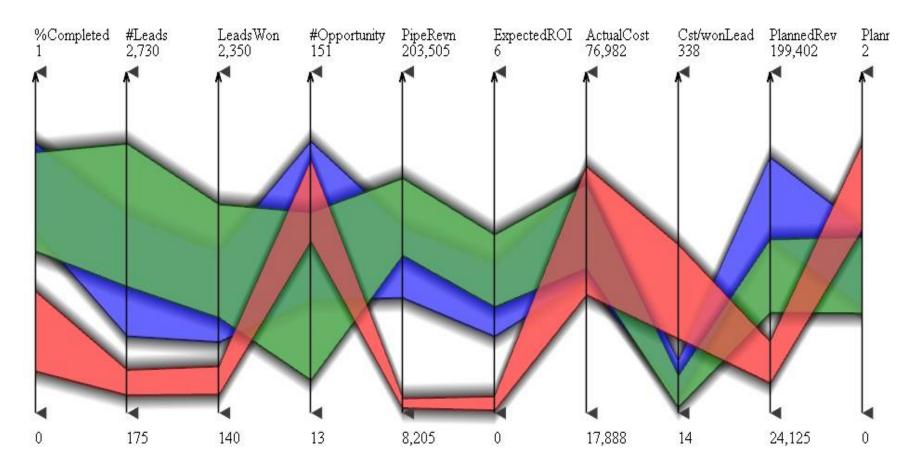
#### individual polylines



completely abstracted away



blended partially



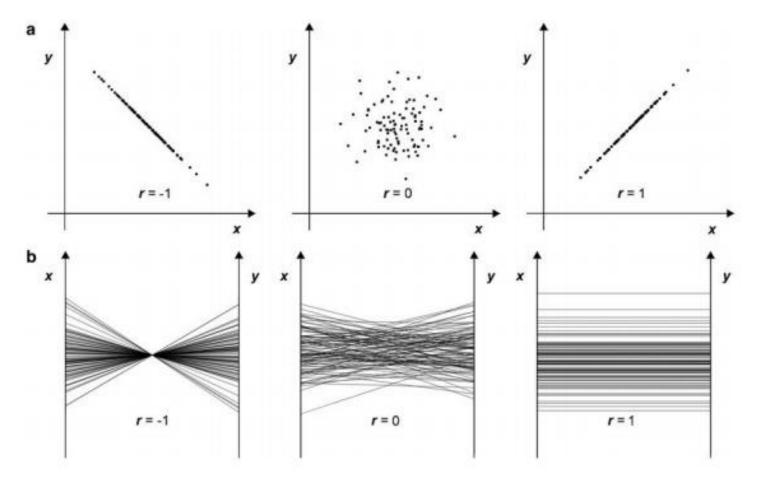
all put together – three clusters

[McDonnell and Mueller, 2008]



## Interaction in Parallel Coordinate

## PATTERNS IN PARALLEL COORDINATES



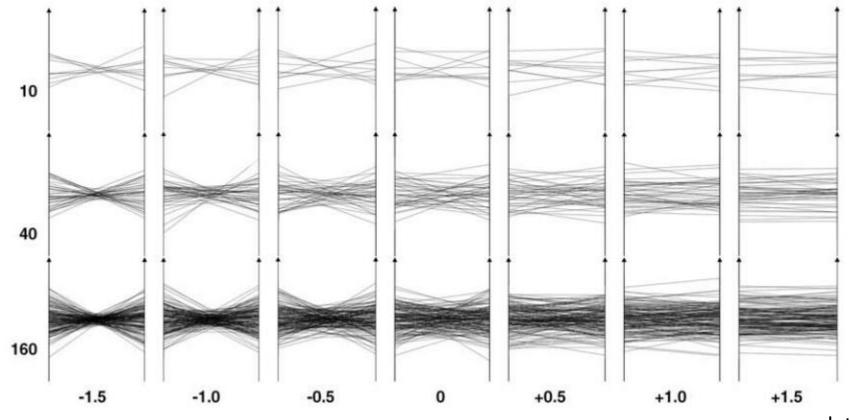
correlation

r=0

r=1.0

## PATTERNS IN PARALLEL COORDINATES

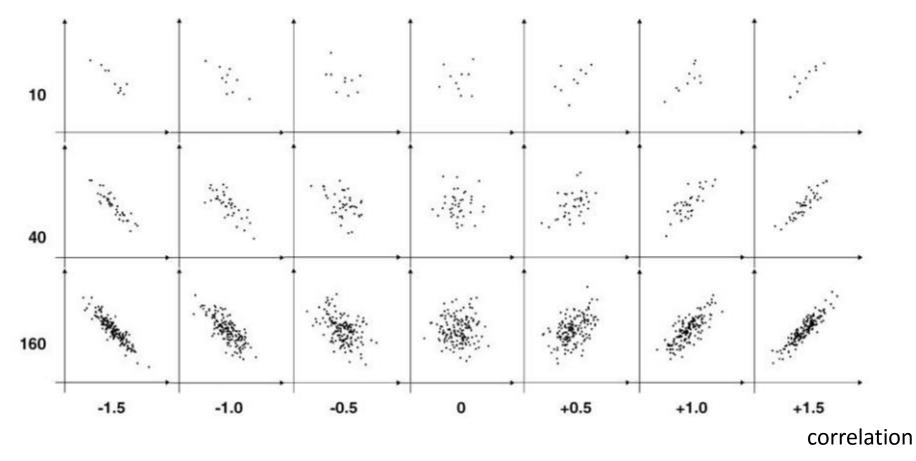
#### # points



correlation

# PATTERNS IN SCATTERPLOTS

#### # points

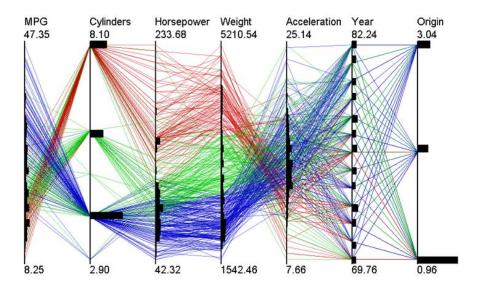


Li et al. found that <u>twice as many</u> correlation levels can be distinguished with scatterplots Information Visualization Vol. 9, 1, 13 – 30

## AXIS REORDERING PROBLEM

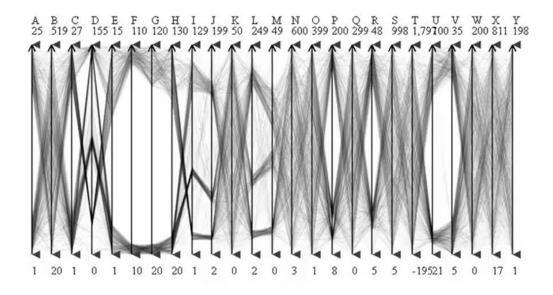
There are n! ways to order the n dimensions

- how many orderings for 7 dimensions?
- **5,040**
- but since can see relationships across 3 axes a better estimate is n!/((n-3)! 3!) = 35
- still a lot of axes orderings to try out  $\rightarrow$  we need help



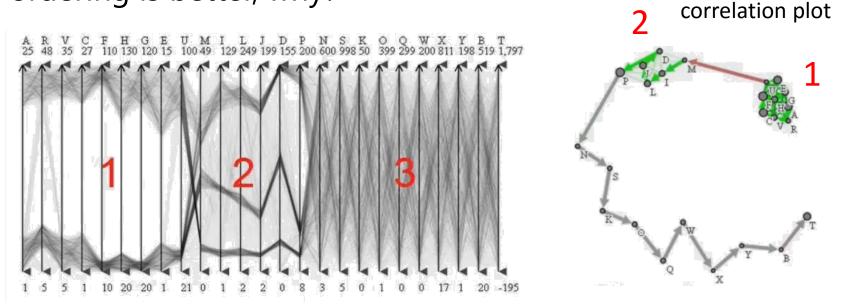
## AXIS REORDERING PROBLEM

The below is not an optimal ordering, why?



## AXIS REORDERING PROBLEM

### This ordering is better, why?



attribute

- because it doesn't waste axis pairs on uncorrelated relationships
- only region 3 is uncorrelated
- regions 1 and 2 are subspace clusters

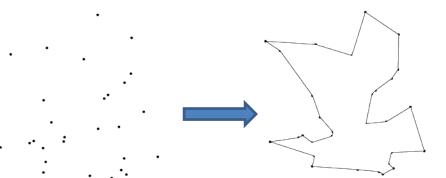
# AUTOMATIC AXIS ORDERING

For each axis pair, compute correlation

Compute optimal-cost path across all attributes

What algorithm does this?

Traveling Salesman Solver



Do the same for the correlation plot



## PARALLEL SETS

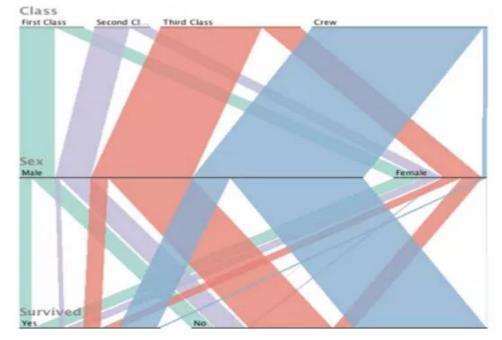
Developed by [Kosara et al. TVCG, 2006]

Parallel coordinates for categorical data

- for example, census and survey data, inventory, etc.
- data that can be summed up in a cross-tabulation

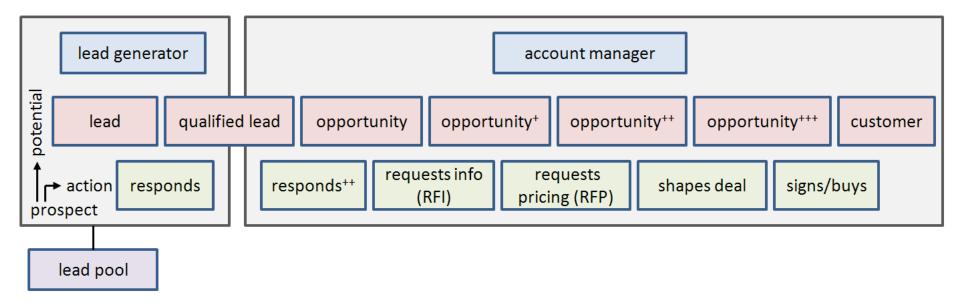
## Example

- Titanic dataset
- what can we see here?



## STORY TELLING WITH PARALLEL COORDINATES

## ANATOMY OF A SALES PIPELINE





#### Scene:

 a meeting of sales executives of a large corporation, Vandelay Industries

Mission:

review the strategies of their various sales teams

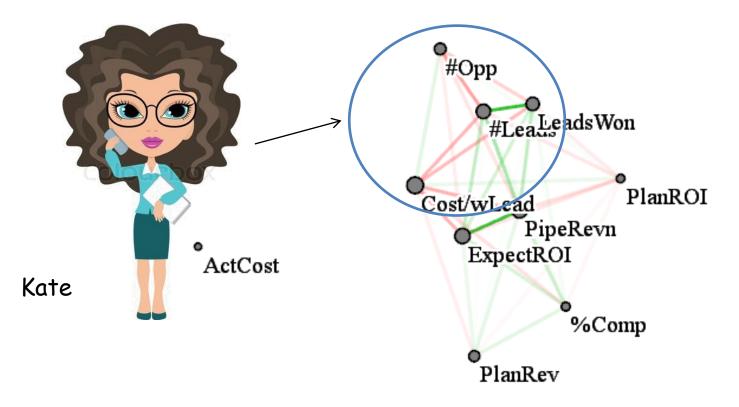
Evidence:

 data of three sales teams with a couple of hundred sales people in each team

## KATE EXPLAINS IT ALL

Meet Kate, a sales analyst in the meeting room:

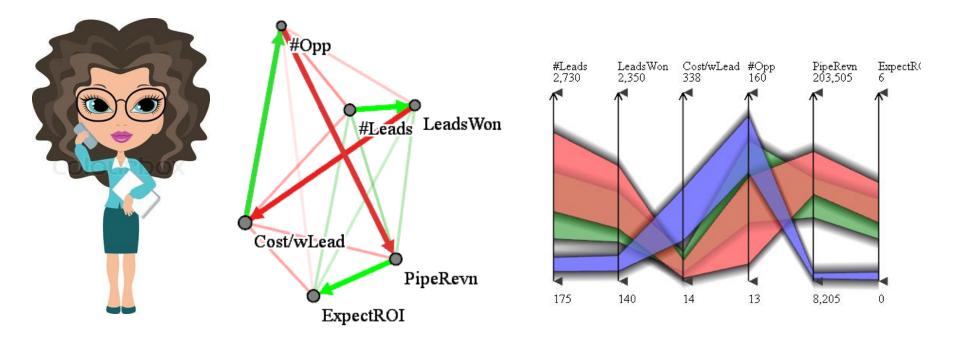
"OK...let's see, cost/won lead is nearby and it has a positive correlation with #opportunities but also a negative correlation with #won leads"



## KATE DESIGNS THE NARRATION

"Let's go and make a revealing route!"

- she uses the mouse and designs the route shown
- she starts explaining the data like a story ...



# FURTHER INSIGHT



Leads LeadsWon CostWonLead #Opportunities 2,730 2,730 338 151

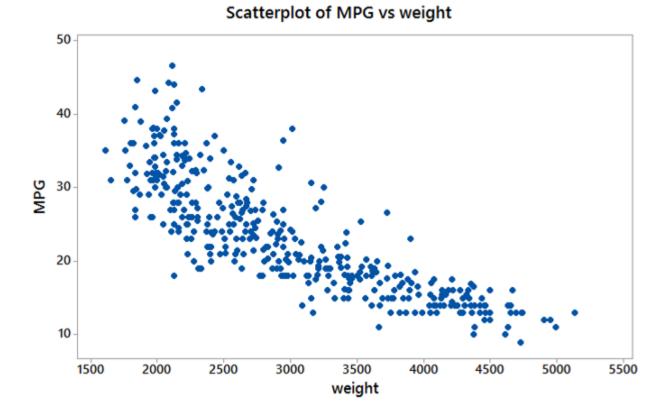
Kate notices something else:

- now looking at the red team
- there seems to be a spread in effectiveness among the team
- the team splits into three distinct groups

She recommends: "Maybe fire the least effective group or at least retrain them"

## Scatterplots

Projection of the data items into a bivariate basis of axes



## **PROJECTION OPERATIONS**

How does 2D projection work in practice?

- N-dimensional point  $x = \{x_1, x_2, x_3, \dots, x_N\}$
- a basis of two orthogonal axis vectors defined in N-D space

 $a = \{a_1. a_2, a_3, \dots a_N\}$ b = {b<sub>1</sub>. b<sub>2</sub>, b<sub>3</sub>, ... b<sub>N</sub>}

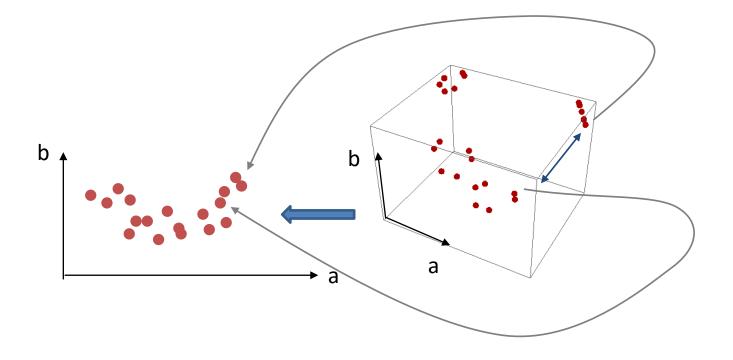
• a projection  $\{x_a, x_b\}$  of x into the 2D basis spanned by  $\{a, b\}$  is:  $x_a = a \cdot x^T$  $x_b = b \cdot x^T$ 

where  $\cdot$  is the dot product, T is the transpose

## **PROJECTION AMBIGUITY**

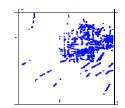
Projection causes inaccuracies

- close neighbors in the projections may not be close neighbors in the original higher-dimensional space
- this is called *projection ambiguity*



# SCATTERPLOT FOR TWO ATTRIBUTES

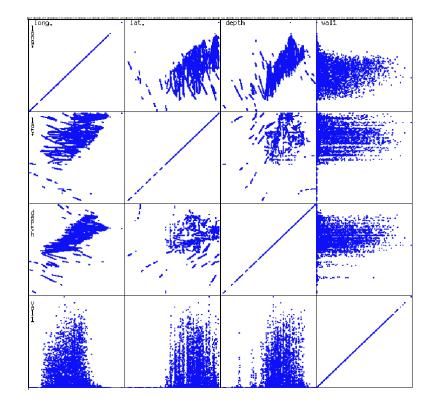
Appropriate for the display of bivariate relationships



# SCATTERPLOT FOR MANY ATTRIBUTES

What to do when there are more than two variables?

- arrange multivariate relationships into scatterplot matrices
- not overly intuitive to perceive multivariate relationships



# SCATTERPLOT MATRIX (SPLOM)

#### Climatic predictors

| WetDays |          |         |         |        |
|---------|----------|---------|---------|--------|
|         | TempJuly |         |         |        |
|         |          | TempJan |         |        |
|         |          |         | TempAnn |        |
|         |          |         |         | RHJuly |

# SCATTERPLOT MATRIX

Scatterplot version of parallel coordinates

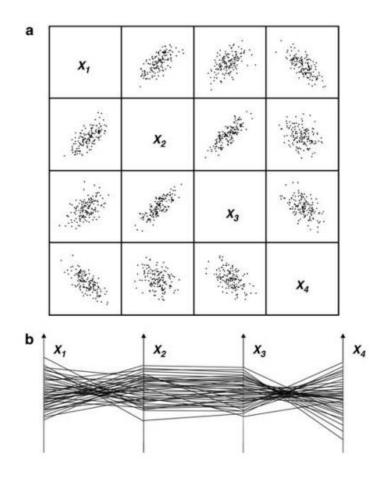
- distributes n(n-1) bivariate relationships over a set of tiles
- for n=4 get 16 tiles
- can use n(n-1)/2 tiles

For even moderately large n:

there will be too many tiles

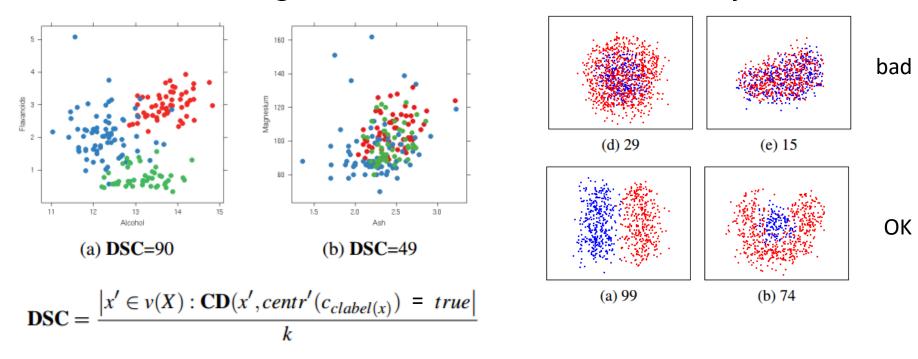
Which plots to select?

- plots that show correlations well
- plots that separate clusters well



#### AUTOMATED SCATTERPLOT SELECTION

#### Several metrics, a good one is Distance Consistency (DSC)



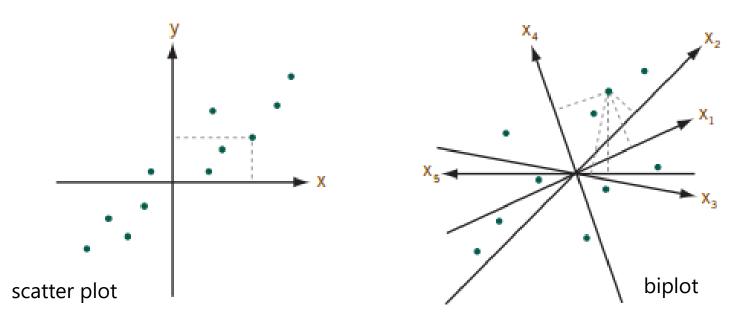
- measures how "pure" a cluster is
- pick the views with highest normalized DSC

M. Sips et al., Computer Graphics Forum, 28(3): 831–838, 2009

#### BIPLOTS

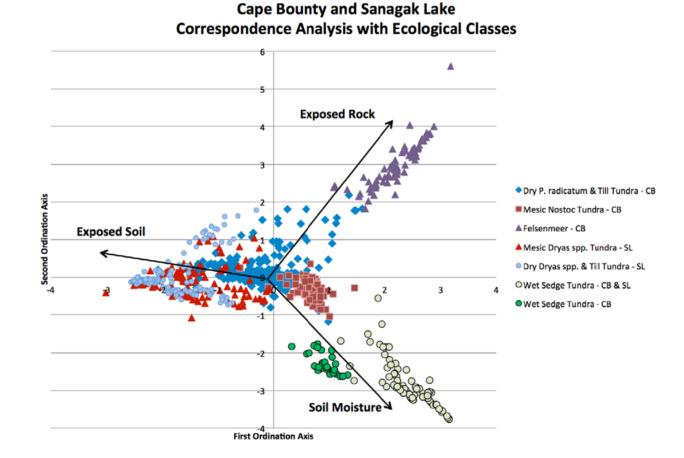
Plots data points and dimension axes into a single visualization

- uses first two PCA vectors as the basis to project into
- find plot coordinates [x] [y]
  for data points: [PCA<sub>1</sub> · data vector] [PCA<sub>2</sub> · data vector]
  for dimension axes: [PCA<sub>1</sub>[dimension]] [PCA<sub>2</sub>[dimension]]



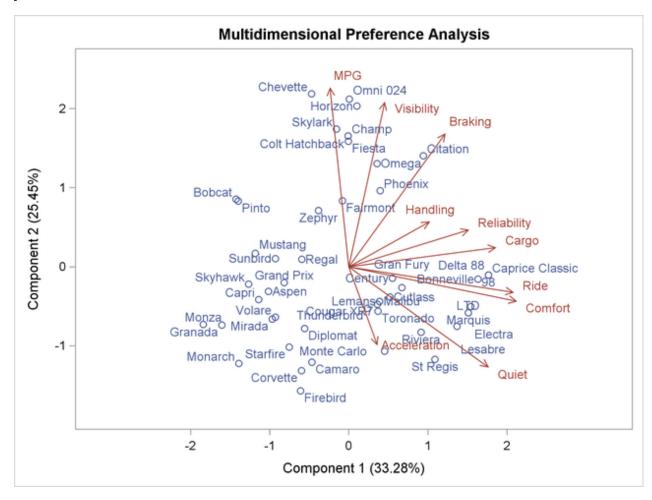
#### BIPLOTS IN PRACTICE

#### See data distributions into the context of their attributes



#### BIPLOTS IN PRACTICE

#### See data points into the context of their attributes



#### BIPLOTS - A WORD OF CAUTION

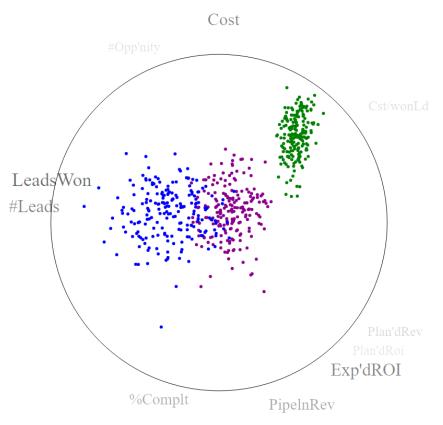
Do be aware that the projections may not be fully accurate

- you are projecting N-D into 2D by a linear transformation
- if there are more than 2 significant PCA vectors then some variability will be lost and won't be visualized
- remote data points might project into nearby plot locations suggesting false relationships → projection ambiguity
- always check out the PCA scree plot to gauge accuracy

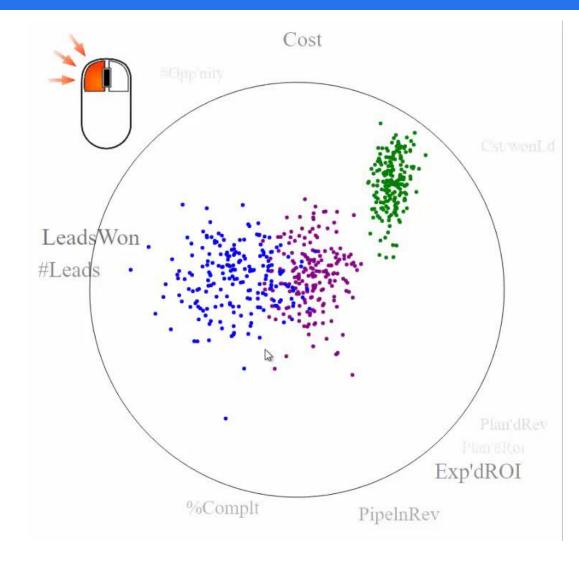
#### INTERACTIVE BIPLOTS

Also called multivariate scatterplot

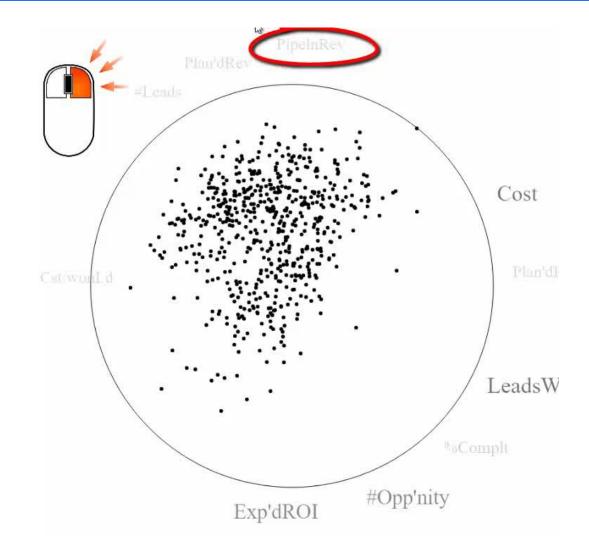
- biplot-axes length vis replaced by graphical design
- less cluttered view
- but there's more to this .....



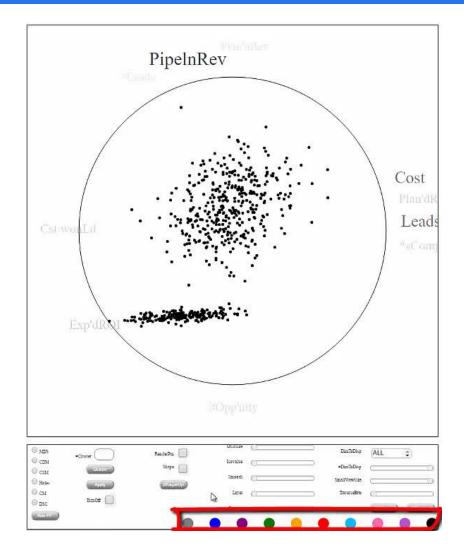
### TRACKBALL-BASED CLUSTER EXPLORATION



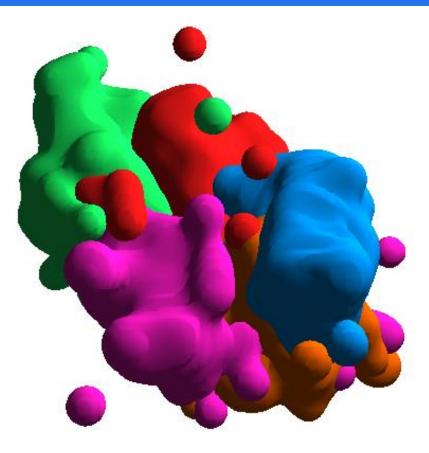
### CHASE INTERESTING CLUSTERS – TRANSITION TO ADJACENT 3D SUBSPACES



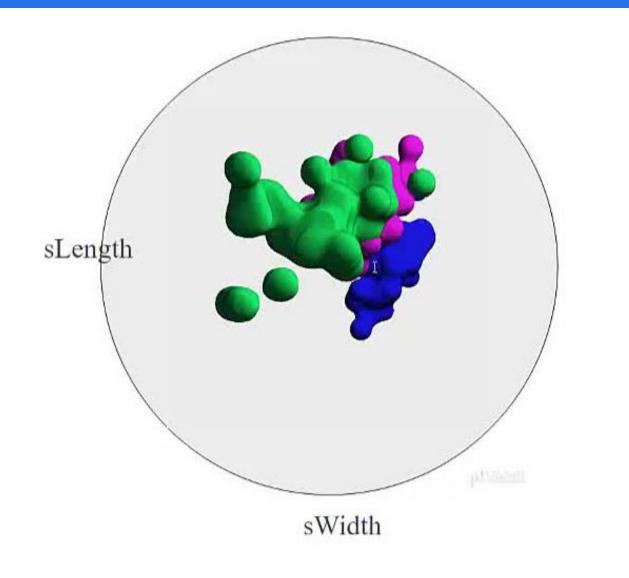
#### EDIT AND ANNOTATE CLUSTERS



# CLARIFY SPATIAL RELATIONSHIPS



### CLARIFY SPATIAL RELATIONSHIPS



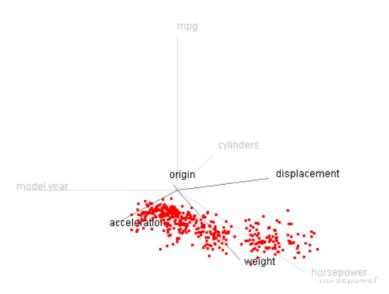
# STAR COORDINATES

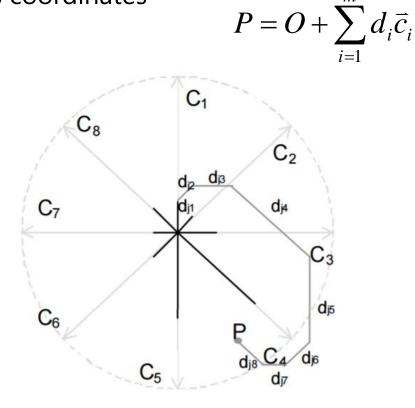
Coordinate system based on axes positioned in a star

a point P is vector sum of all axis coordinates

Interactions

- axis rescaling, rotation
- reveal correlations
- resolve plotting ambiguities



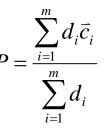


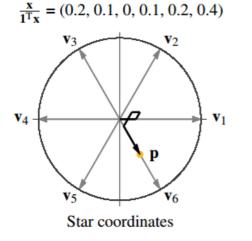
[E. Kandogan SIGKDD 2001]

#### RADVIZ

#### Similar to Star Coordinates

- uses a spring model difference is normalization by sum of values  $P = \frac{\sum_{i=1}^{m} d_i \vec{c}_i}{\sum_{i=1}^{m} d_i}$





V<sub>5</sub> RadViz

 $\mathbf{x} = (0.5, 0.25, 0, 0.25, 0.5, 1)$ 

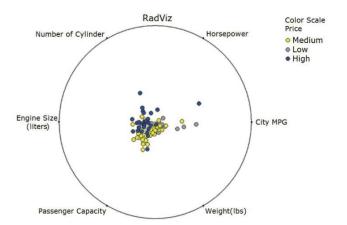
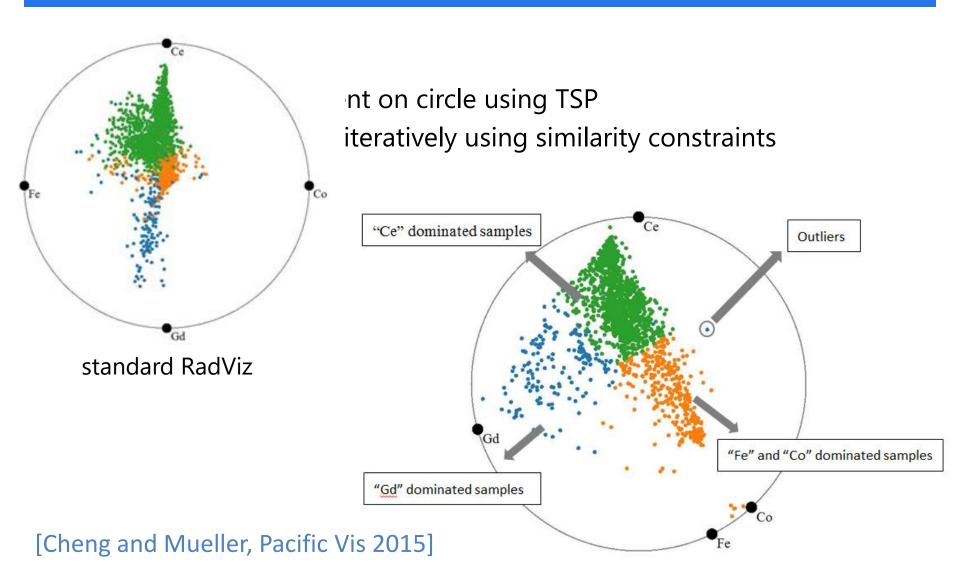


Figure by: Rubio-Sanchez et al. TVCG 2015

 $\equiv$ 

#### [P. Hoffman et al. VIS 1997]

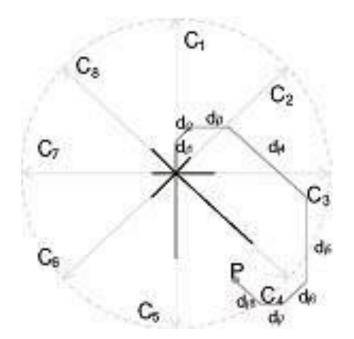
### OPTIMIZING THE RADVIZ LAYOUT



#### STAR COORDINATES

Coordinate system based on axes positioned in a "star", or circular pattern

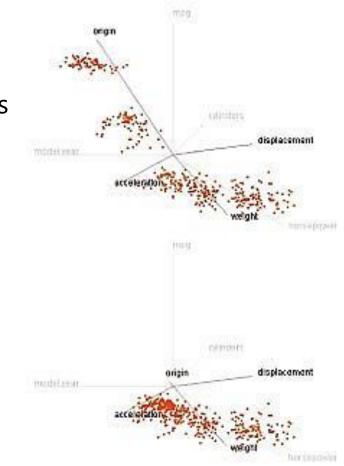
• a point P is plotted as a vector sum of all axis coordinates



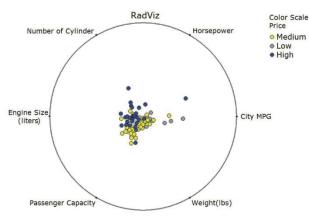
# STAR COORDINATES

**Operations defined on Star Coords** 

- scaling changes contribution to resulting visualization
- axis rotation can visualize correlations
- also used to reduce projection ambiguities



#### Similar paradigm: RadViz





All of these scatterplot displays share the following characteristics

- allow users to see the data points in the context of the variables
- but can suffer from projection ambiguity
- some offer interaction to resolve some of these shortcomings
- but interaction can be tedious

Are there visualization paradigms that can overcome these problems?

- yes, algorithms that optimize the layout to preserve distances or similarities in high-dimensional space
- these are also called *lower-dimensional embeddings*
- very popular is MDS (Multi-dimensional scaling)

# MULTIDIMENSIONAL SCALING (MDS)

MDS is for irregular structures

- scattered points in high-dimensions (N-D)
- adjacency matrices

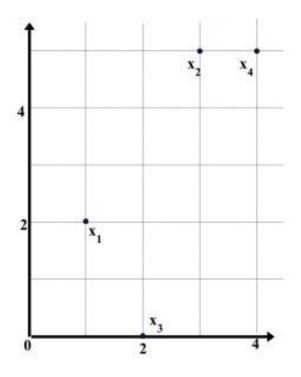
Maps the distances between observations from N-D into low-D (say 2D)

 attempts to ensure that differences between pairs of points in this reduced space match as closely as possible

The input to MDS is a distance (similarity) matrix

- actually, you use the *dissimilarity* matrix because you want similar points mapped closely
- dissimilar point pairs will have greater values and map father apart

# THE DISSIMILARITY MATRIX



#### **Data Matrix**

| point | attribute1 | attribute2 |
|-------|------------|------------|
| x1    | 1          | 2          |
| x2    | 3          | 5          |
| x3    | 2          | 0          |
| x4    | 4          | 5          |

#### **Dissimilarity Matrix**

#### (with Euclidean Distance)

|    | xl   | x2  | x3   | x4 |
|----|------|-----|------|----|
| x1 | 0    |     |      |    |
| x2 | 3.61 | 0   |      |    |
| x3 | 2.24 | 5.1 | 0    |    |
| x4 | 4.24 | 1   | 5.39 | 0  |

#### DISTANCE MATRIX

MDS turns a distance matrix into a network or point cloud

correlation, cosine, Euclidian, and so on

#### Suppose you know a matrix of distances among cities

|         | Chicago | Raleigh | Boston | Seattle | S.F. | Austin | Orlando |
|---------|---------|---------|--------|---------|------|--------|---------|
| Chicago | 0       |         |        |         |      |        |         |
| Raleigh | 641     | 0       |        |         |      |        |         |
| Boston  | 851     | 608     | 0      |         |      |        |         |
| Seattle | 1733    | 2363    | 2488   | 0       |      |        |         |
| S.F.    | 1855    | 2406    | 2696   | 684     | 0    |        |         |
| Austin  | 972     | 1167    | 1691   | 1764    | 1495 | 0      |         |
| Orlando | 994     | 520     | 1105   | 2565    | 2458 | 1015   | 0       |

# RESULT OF MDS



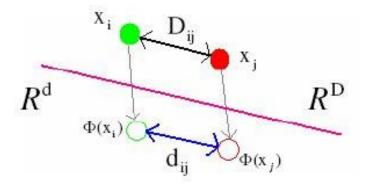
#### COMPARE WITH REAL MAP



# MDS ALGORITHM

#### Task:

- Find that configuration of image points whose pairwise distances are most similar to the original inter-point distances !!!
- Formally:
  - Define:  $D_{ij} = ||x_i x_j||_D$   $d_{ij} = ||y_i y_j||_d$
  - Claim:  $D_{ij} \equiv d_{ij}$   $\forall i, j \in [1, n]$
- In general: an exact solution is not possible !!!
- Inter Point distances → invariance features



# MDS ALGORITHM

#### Strategy (of metric MDS):

- iterative procedure to find a good configuration of image points
  - 1) Initialization
    - $\rightarrow$  Begin with some (arbitrary) initial configuration
  - 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

# MDS ALGORITHM

#### Strategy (of metric MDS):

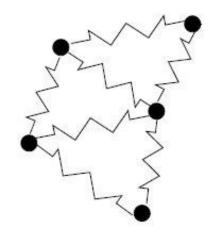
- iterative procedure to find a good configuration of image points
  - 1) Initialization
    - → Begin with some (arbitrary) initial configuration
  - 2) Alter the image points and try to find a configuration of points that minimizes the following sum-of-squares error function:

$$E = \sum_{i < j}^{N} \left( D_{ij} - d_{ij} \right)^2$$

# FORCE-DIRECTED ALGORITHM

#### Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached



# FORCE-DIRECTED ALGORITHM

#### Spring-like system

- insert springs within each node
- the length of the spring encodes the desired node distance
- start at an initial configuration
- iteratively move nodes until an energy minimum is reached



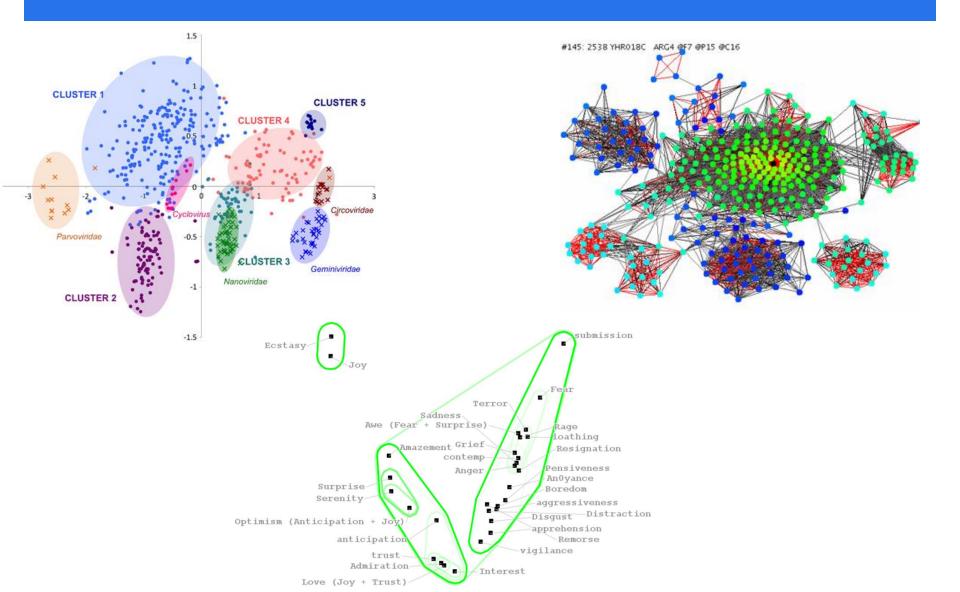
# USES OF MDS

Distance (similarity) metric

- Euclidian distance (best for data)
- Cosine distance (best for data)
- |1-correlation| distance (best for attributes)
- use 1-correlation to move correlated attribute points closer
- use || if you do not care about positive or negative correlations

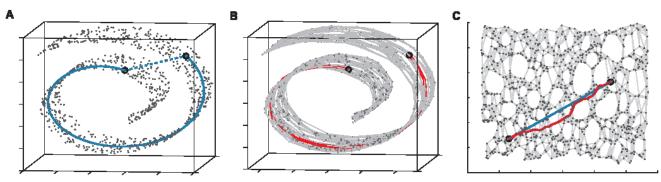


#### MDS EXAMPLES



# MANIFOLD LEARNING: ISOMAP

by: [J. Tenenbaum, V. de Silva, J. Langford, Science, 2000]



Tries to unwrap a high-dimensional surface (A)  $\rightarrow$  manifold

noisy points could be averaged first and projected onto the manifold

Algorithm

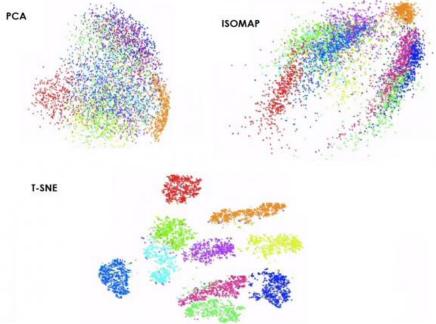
- construct neighborhood graph  $G \rightarrow (B)$
- for each pair of points in G compute the shortest path distances  $\rightarrow$  geodesic distances
- fill similarity matrix with these geodesic distances
- embed (layout) in low-D (2D) with MDS  $\rightarrow$  (C)
- visualize it like an MDS layout



- t-Distributed Stochastic Neighbor Embedding
  - innovated by [l. van der Maaten and G. Hinton, 2008]

Works as a two-stage approach

- Construct a probability distribution over pairs of high-D points based on similarity
- Define a similar probability distribution over the points in the low-D map



# SELF-ORGANIZING MAPS (SOM)

#### Introduced by [T. Kohonen et al. 1996]

- unsupervised learning and clustering algorithm
- has advantages compared to hierarchical clustering
- often realized as an artificial neural network

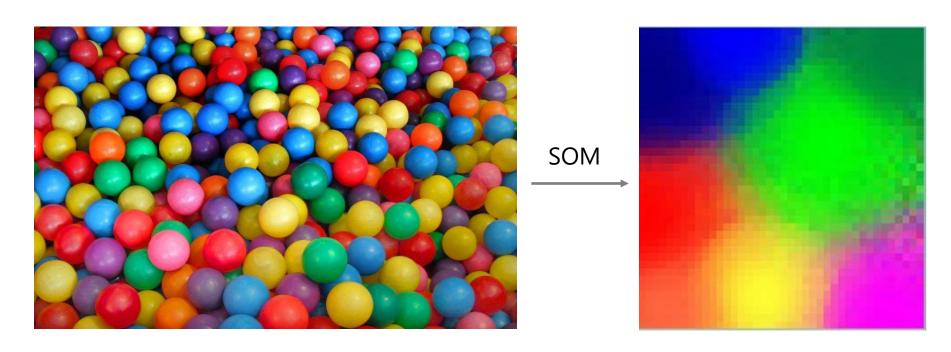
#### SOMs group the data

- perform a nonlinear projection from N-dimensional input space onto two-dimensional visualization space
- provide a useful topological arrangement of information objects in order to display clusters of similar objects in information space

### SOM EXAMPLE

Map a dataset of 3D color vectors into a 2D plane

- assume you have an image with 5 colors
- want to see how many there are of each
- compute an SOM of the color vectors



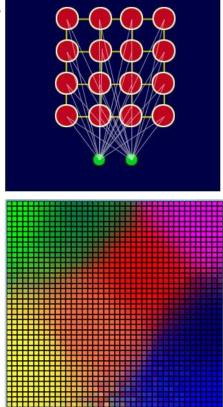
## SOM ALGORITHM

Create array and connect all elements to the N input dimensions

- shown here: 2D vector with 4×4 elements
- initialize weights

For each input vector chosen at random

- find node with weights most like the input vector
- call that node the Best Matching Unit (BMU)
- find nodes within neighborhood radius r of BMU
  - initially *r* is chosen as the radius of the lattice
  - diminishes at each time step
- adjust the weights of the neighboring nodes to make them more like the input vector
  - the closer a node is to the BMU, the more its weights get altered

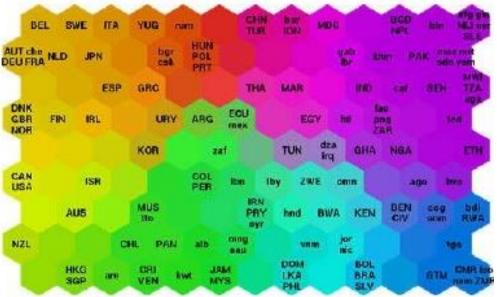


### SOM EXAMPLE: POVERTY MAP

#### SOM - Result Example

#### World Poverty Map

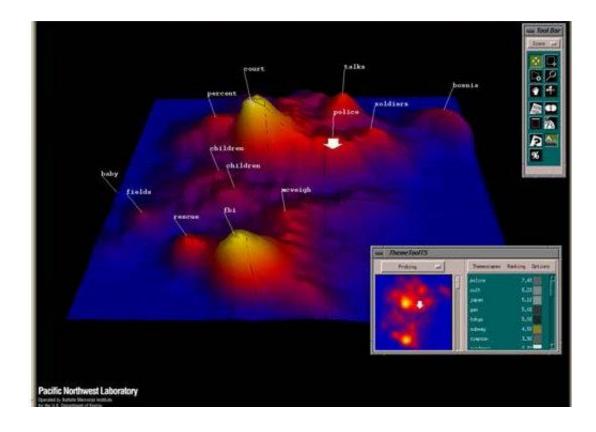
A SOM has been used to classify statistical data describing various quality-of-life factors such as state of health, nutrition, educational services etc. . **Countries with similar qualityof-life factors end up clustered together**. The countries with better quality-of-life are situated toward the upper left and the most poverty stricken countries are toward the lower right.



'Poverty map' based on 39 indicators from World Bank statistics (1992)

### SOM EXAMPLE: THEMESCAPE

Height represents density or number of documents in the region Invented at Pacific Northwest National Lab (PNNL)



### WHAT ABOUT CATEGORICAL VARIABLES?

You will need to use correspondence analysis (CA)

- CA is PCA for categorical variables
- related to factor analysis

Makes use of the  $\chi^2\,\text{test}$ 

• what's  $\chi^2$ ?

## CHI-SQUARE TEST (NOMINAL DATA)

A *chi-square test* is used to investigate relationships

Relationships between categorical, or nominal-scale, variables representing attributes of people, interaction techniques, systems, etc.

Data organized in a *contingency table* – cross tabulation containing counts (frequency data) for number of observations in each category

A chi-square test compares the *observed values* against *expected values* 

Expected values assume "no difference"

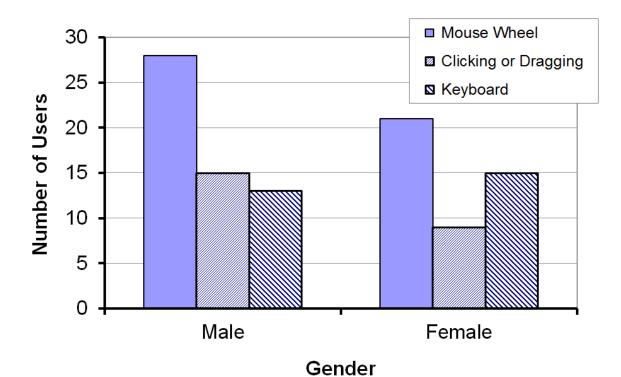
Research question:

 Do males and females differ in their method of scrolling on desktop systems? (next slide)

## Chi-square – Example #1

| Observed Number of Users |      |       |    |     |  |  |  |  |  |  |  |  |
|--------------------------|------|-------|----|-----|--|--|--|--|--|--|--|--|
| Gender                   | Scro | Total |    |     |  |  |  |  |  |  |  |  |
| Gender                   | MW   |       |    |     |  |  |  |  |  |  |  |  |
| Male                     | 28   | 15    | 13 | 56  |  |  |  |  |  |  |  |  |
| Female                   | 21   | 9     | 15 | 45  |  |  |  |  |  |  |  |  |
| Total                    | 49   | 24    | 28 | 101 |  |  |  |  |  |  |  |  |

MW = mouse wheel CD = clicking, dragging KB = keyboard



## Chi-square – Example #1

#### 56.0.49.0/101=27.2

| Expected Number of Users |      |       |       |      |  |  |  |  |  |  |  |
|--------------------------|------|-------|-------|------|--|--|--|--|--|--|--|
| Condor                   | Scr  | Total |       |      |  |  |  |  |  |  |  |
| Gender                   | MW   | CD    | TOLAT |      |  |  |  |  |  |  |  |
| Male                     | 27.2 | 13.3  | 15.5  | 56.0 |  |  |  |  |  |  |  |
| Female                   | 21.8 | 10.7  | 12.5  | 45.0 |  |  |  |  |  |  |  |
| Total                    | 49.0 | 24.0  | 28.0  | 101  |  |  |  |  |  |  |  |

#### $(Observed-Expected)^{2}/Expected = (28-27.2)^{2}/27.2$

|        | Chi Squares |       |       |       |  |  |  |  |  |  |  |  |  |
|--------|-------------|-------|-------|-------|--|--|--|--|--|--|--|--|--|
| Gender | Scr         | Total |       |       |  |  |  |  |  |  |  |  |  |
| Gender | MW          | TOLAT |       |       |  |  |  |  |  |  |  |  |  |
| Male   | 0.025       | 0.215 | 0.411 | 0.651 |  |  |  |  |  |  |  |  |  |
| Female | 0.032       | 0.268 | 0.511 | 0.811 |  |  |  |  |  |  |  |  |  |
| Total  | 0.057       | 0.483 | 0.922 | 1.462 |  |  |  |  |  |  |  |  |  |

Significant if it exceeds critical value (next slide)

 $\chi^2 = 1.462$ 

### CHI-SQUARE CRITICAL VALUES

Decide in advance on *alpha* (typically .05)

Degrees of freedom

- df = (r-1)(c-1) = (2-1)(3-1) = 2
- r = number of rows, c = number of columns

| Significance  |       | Degrees of Freedom |       |       |       |       |       |       |  |  |  |  |  |  |  |
|---------------|-------|--------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--|--|
| Threshold (a) | 1     | 2                  | 3     | 4     | 5     | 6     | 7     | 8     |  |  |  |  |  |  |  |
| .1            | 2.71  | 4.61               | 6.25  | 7.78  | 9.24  | 10.65 | 12.02 | 13.36 |  |  |  |  |  |  |  |
| .05           | 3.84  | 5.99               | 7.82  | 9.49  | 11.07 | 12.59 | 14.07 | 15.51 |  |  |  |  |  |  |  |
| .01           | 6.64  | 9.21               | 11.35 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 |  |  |  |  |  |  |  |
| .001          | 10.83 | 13.82              | 16.27 | 18.47 | 20.52 | 22.46 | 24.32 | 26.13 |  |  |  |  |  |  |  |

 $\chi^2$  = 1.462 (< 5.99 ∴ not significant)

## CORRESPONDENCE ANALYSIS (CA)

more info

Example:

|                      | Smoki       | ing Cat      | tegory        |              |               |
|----------------------|-------------|--------------|---------------|--------------|---------------|
| Staff<br>Group       | (1)<br>None | (2)<br>Light | (3)<br>Medium | (4)<br>Heavy | Row<br>Totals |
| (1) Senior Managers  | 4           | 2            | 3             | 2            | 11            |
| (2) Junior Managers  | 4           | 3            | 7             | 4            | 18            |
| (3) Senior Employees | 25          | 10           | 12            | 4            | 51            |
| (4) Junior Employees | 18          | 24           | 33            | 13           | 88            |
| (5) Secretaries      | 10          | 6            | 7             | 2            | 25            |
| Column Totals        | 61          | 45           | 62            | 25           | 193           |

There are two high-D spaces

- 4D (column) space spanned by smoking habits plot staff group
- 5D (row) space spanned by staff group plot smoking habits

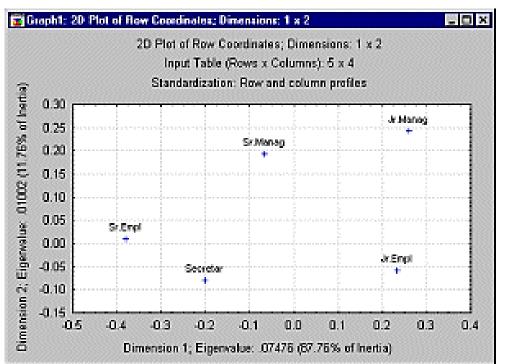
Are these two spaces (the rows and columns) independent?

• this occurs when the  $\chi^2$  statistics of the table is insignificant

## CA EIGEN ANALYSIS

#### Let's do some plotting

- compute distance matrix of the rows CC<sup>T</sup>
- compute Eigenvector matrix U and the Eigenvalue matrix D
- sort eigenvectors by values, pick two major vectors, create 2D plot



-- senior employees most similar to secretaries

Staff

Group

(1) Senior Managers

(2) Junior Managers

(3) Senior Employees

(4) Junior Employees

(5) Secretaries

Column Totals

Smoking Category

None Light Medium

(3)

3

12

33

7

62

(4)

2

4

4 13

2

25

Heavy

Row

Totals

11

18

51

88

25

193

(2)

2

3

10

24

6

45

(1)

4

4

25

18 10

61

| Eigenvalues and Inertia for all Dimensions       |  |
|--------------------------------------------------|--|
| Input Table (Rows x Columns): 5 x 4              |  |
| Total Inertia = .08519 Chi <sup>2</sup> = 16.442 |  |

|   | -       | -       |          | Cumulatv<br>Percent |          |
|---|---------|---------|----------|---------------------|----------|
| 1 | .273421 | .074759 | 87.75587 | 87.7559             | 14.42851 |
| 2 | .100086 | .010017 | 11.75865 | 99.5145             | 1.93332  |
| 3 | .020337 | .000414 | .48547   | 100.0000            | .07982   |

## CA EIGEN ANALYSIS

|                      | Smoki       | ing Cat      | tegory        |              |               |
|----------------------|-------------|--------------|---------------|--------------|---------------|
| Staff<br>Group       | (1)<br>None | (2)<br>Light | (3)<br>Medium | (4)<br>Heavy | Row<br>Totals |
| (1) Senior Managers  | 4           | 2            | 3             | 2            | 11            |
| (2) Junior Managers  | 4           | 3            | 7             | 4            | 18            |
| (3) Senior Employees | 25          | 10           | 12            | 4            | 51            |
| (4) Junior Employees | 18          | 24           | 33            | 13           | 88            |
| (5) Secretaries      | 10          | 6            | 7             | 2            | 25            |
| Column Totals        | 61          | 45           | 62            | 25           | 193           |

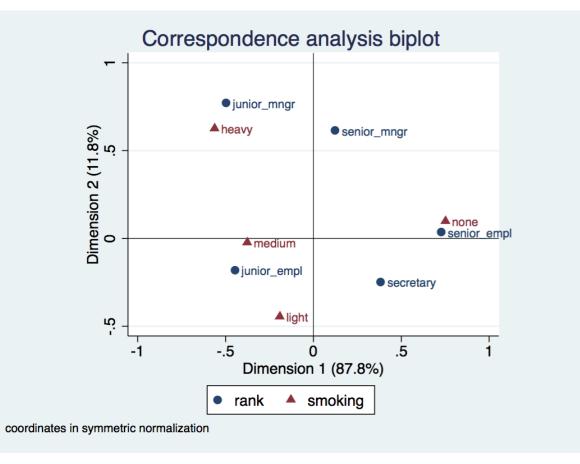
Next:

- compute distance matrix of the columns C<sup>T</sup>C
- compute Eigenvector matrix V (gives the same Eigenvalue matrix D)
- sort eigenvectors by value
- pick two major vectors
- create 2D plot of smoking categories

Following (next slide):

- combine the plots of U and V
- if the  $\chi^2$  statistics was significant we should see some dependencies

### COMBINED CA PLOT



Interpretation sample (using the  $\chi^2$  frequentist mindset)

relatively speaking, there are more non-smoking senior employees

### EXTENDING TO CASES

| Case<br>Number | Senior<br>Manager | Junior<br>Manager | Senior<br>Employee | Junior<br>Employee | Secretary | None | Light | Medium | Heavy |
|----------------|-------------------|-------------------|--------------------|--------------------|-----------|------|-------|--------|-------|
| 1              | 1                 | 0                 | 0                  | 0                  | 0         | 1    | 0     | 0      | 0     |
| 2              | 1                 | 0                 | 0                  | 0                  | 0         | 1    | 0     | 0      | 0     |
| 3              | 1                 | 0                 | 0                  | 0                  | 0         | 1    | 0     | 0      | 0     |
| 4              | 1                 | 0                 | 0                  | 0                  | 0         | 1    | 0     | 0      | 0     |
| 5              | 1                 | 0                 | 0                  | 0                  | 0         | 0    | 1     | 0      | 0     |
|                |                   |                   | •                  |                    | •         | •    | •     | •      |       |
|                | •                 |                   | •                  |                    | •         | •    | •     | •      | •     |
|                | •                 |                   | •                  | •                  | •         | •    | •     | •      |       |
| 191            | 0                 | 0                 | 0                  | 0                  | 1         | 0    | 0     | 1      | 0     |
| 192            | 0                 | 0                 | 0                  | 0                  | 1         | 0    | 0     | 0      | 1     |
| 193            | 0                 | 0                 | 0                  | 0                  | 1         | 0    | 0     | 0      | 1     |

Plot would now show 193 cases and 9 variables

### MULTIPLE CORRESPONDENCE ANALYSIS

Extension where there are more than 2 categorical variables

|          | SUR | VIVAL | AGE     |         |        | LOCATION |        |          |  |  |  |
|----------|-----|-------|---------|---------|--------|----------|--------|----------|--|--|--|
| Case No. | NO  | YES   | LESST50 | A50T069 | OVER69 | токуо    | BOSTON | GLAMORGN |  |  |  |
| 1        | 0   | 1     | 0       | 1       | 0      | 0        | 0      | 1        |  |  |  |
| 2        | 1   | 0     | 1       | 0       | 0      | 1        | 0      | 0        |  |  |  |
| 3        | 0   | 1     | 0       | 1       | 0      | 0        | 1      | 0        |  |  |  |
| 4        | 0   | 1     | 0       | 0       | 1      | 0        | 0      | 1        |  |  |  |
|          | •   | •     |         |         | •      |          |        |          |  |  |  |
|          | •   | •     | •       |         | •      | •        |        | •        |  |  |  |
|          | •   | •     | •       |         | •      |          |        |          |  |  |  |
| 762      | 1   | 0     | 0       | 1       | 0      | 1        | 0      | 0        |  |  |  |
| 763      | 0   | 1     | 1       | 0       | 0      | 0        | 1      | 0        |  |  |  |
| 764      | 0   | 1     | 0       | 1       | 1 0    |          | 0      | 1        |  |  |  |

Let's call it matrix X

### MULTIPLE CORRESPONDENCE ANALYSIS

#### Compute X'X to get the Burt Table

|                   | SUR | VIVAL | AGE |       |     | LOCATI | ON     |          |  |
|-------------------|-----|-------|-----|-------|-----|--------|--------|----------|--|
|                   | NO  | YES   | <50 | 50-69 | 69+ | токуо  | BOSTON | GLAMORGN |  |
| SURVIVAL:NO       | 210 | 0     | 68  | 93    | 49  | 60     | 82     | 68       |  |
| SURVIVAL:YES      | 0   | 554   | 212 | 258   | 84  | 230    | 171    | 153      |  |
| AGE:UNDER_50      | 68  | 212   | 280 | o     | o   | 151    | 58     | 71       |  |
| AGE:A_50T069      | 93  | 258   | 0   | 351   | 0   | 120    | 122    | 109      |  |
| AGE:OVER_69       | 49  | 84    | 0   | 0     | 133 | 19     | 73     | 41       |  |
| LOCATION: TOKYO   | 60  | 230   | 151 | 120   | 19  | 290    | 0      | 0        |  |
| LOCATION:BOSTON   | 82  | 171   | 58  | 122   | 73  | 0      | 253    | 0        |  |
| LOCATION:GLAMORGN | 68  | 153   | 71  | 109   | 41  | 0      | 0      | 221      |  |

#### Compute Eigenvectors and Eigenvalues

- keep top two Eigenvectors/values
- visualize the attribute loadings of these two Eigenvectors into the Burt table plot (the loadings are the coordinates)

### LARGER MCA EXAMPLE

#### Results of a survey of car owners and car attributes

|                      |          |          |          |       |        |       |        |        | Burt Ta | able        |              |     |      |         |                         |        |                  |        |      |
|----------------------|----------|----------|----------|-------|--------|-------|--------|--------|---------|-------------|--------------|-----|------|---------|-------------------------|--------|------------------|--------|------|
|                      | American | European | Japanese | Large | Medium | Small | Family | Sporty | Work    | 1<br>Income | 2<br>Incomes | Own | Rent | Married | Married<br>with<br>Kids | Single | Single with Kids | Female | Male |
| American             | 125      | 0        | 0        | 36    | 60     | 29    | 81     | 24     | 20      | 58          | 67           | 93  | 32   | 37      | 50                      | 32     | 6                | 58     | 67   |
| European             | 0        | 44       | 0        | 4     | 20     | 20    | 17     | 23     | 4       | 18          | 26           | 38  | 6    | 13      | 15                      | 15     | 1                | 21     | 23   |
| Japanese             | 0        | 0        | 165      | 2     | 61     | 102   | 76     | 59     | 30      | 74          | 91           | 111 | 54   | 51      | 44                      | 62     | 8                | 70     | 95   |
| Large                | 36       | 4        | 2        | 42    | 0      | 0     | 30     | 1      | 11      | 20          | 22           | 35  | 7    | 9       | 21                      | 11     | 1                | 17     | 25   |
| Medium               | 60       | 20       | 61       | 0     | 141    | 0     | 89     | 39     | 13      | 57          | 84           | 106 | 35   | 42      | 51                      | 40     | 8                | 70     | 71   |
| Small                | 29       | 20       | 102      | 0     | 0      | 151   | 55     | 66     | 30      | 73          | 78           | 101 | 50   | 50      | 37                      | 58     | 6                | 62     | 89   |
| Family               | 81       | 17       | 76       | 30    | 89     | 55    | 174    | 0      | 0       | 69          | 105          | 130 | 44   | 50      | 79                      | 35     | 10               | 83     | 91   |
| Sporty               | 24       | 23       | 59       | 1     | 39     | 66    | 0      | 106    | 0       | 55          | 51           | 71  | 35   | 35      | 12                      | 57     | 2                | 44     | 62   |
| Work                 | 20       | 4        | 30       | 11    | 13     | 30    | 0      | 0      | 54      | 26          | 28           | 41  | 13   | 16      | 18                      | 17     | 3                | 22     | 32   |
| 1 Income             | 58       | 18       | 74       | 20    | 57     | 73    | 69     | 55     | 26      | 150         | 0            | 80  | 70   | 10      | 27                      | 99     | 14               | 47     | 103  |
| 2 Incomes            | 67       | 26       | 91       | 22    | 84     | 78    | 105    | 51     | 28      | 0           | 184          | 162 | 22   | 91      | 82                      | 10     | 1                | 102    | 82   |
| Own                  | 93       | 38       | 111      | 35    | 106    | 101   | 130    | 71     | 41      | 80          | 162          | 242 | 0    | 76      | 106                     | 52     | 8                | 114    | 128  |
| Rent                 | 32       | 6        | 54       | 7     | 35     | 50    | 44     | 35     | 13      | 70          | 22           | 0   | 92   | 25      | 3                       | 57     | 7                | 35     | 57   |
| Married              | 37       | 13       | 51       | 9     | 42     | 50    | 50     | 35     | 16      | 10          | 91           | 76  | 25   | 101     | 0                       | 0      | 0                | 53     | 48   |
| Married with<br>Kids | 50       | 15       | 44       | 21    | 51     | 37    | 79     | 12     | 18      | 27          | 82           | 106 | 3    | 0       | 109                     | 0      | 0                | 48     | 61   |
| Single               | 32       | 15       | 62       | 11    | 40     | 58    | 35     | 57     | 17      | 99          | 10           | 52  | 57   | 0       | 0                       | 109    | 0                | 35     | 74   |
| Single with Kids     | 6        | 1        | 8        | 1     | 8      | 6     | 10     | 2      | 3       | 14          | 1            | 8   | 7    | 0       | 0                       | 0      | 15               | 13     | 2    |
| Female               | 58       | 21       | 70       | 17    | 70     | 62    | 83     | 44     | 22      | 47          | 102          | 114 | 35   | 53      | 48                      | 35     | 13               | 149    | 0    |
| Male                 | 67       | 23       | 95       | 25    | 71     | 89    | 91     | 62     | 32      | 103         | 82           | 128 | 57   | 48      | 61                      | 74     | 2                | 0      | 185  |

#### more info see here

## MCA EXAMPLE (2)

| Inertia and Chi-Square Decomposition |                      |                |         |                       |              |  |  |  |
|--------------------------------------|----------------------|----------------|---------|-----------------------|--------------|--|--|--|
| Singular<br>Value                    | Principal<br>Inertia | Chi-<br>Square | Percent | Cumulative<br>Percent | 4 8 12 16 20 |  |  |  |
| 0.56934                              | 0.32415              | 970.77         | 18.91   | 18.91                 |              |  |  |  |
| 0.48352                              | 0.23380              | 700.17         | 13.64   | 32.55                 |              |  |  |  |
| 0.42716                              | 0.18247              | 546.45         | 10.64   | 43.19                 |              |  |  |  |
| 0.41215                              | 0.16987              | 508.73         | 9.91    | 53.10                 |              |  |  |  |
| 0.38773                              | 0.15033              | 450.22         | 8.77    | 61.87                 |              |  |  |  |
| 0.38520                              | 0.14838              | 444.35         | 8.66    | 70.52                 |              |  |  |  |
| 0.34066                              | 0.11605              | 347.55         | 6.77    | 77.29                 |              |  |  |  |
| 0.32983                              | 0.10879              | 325.79         | 6.35    | 83.64                 |              |  |  |  |
| 0.31517                              | 0.09933              | 297.47         | 5.79    | 89.43                 |              |  |  |  |
| 0.28069                              | 0.07879              | 235.95         | 4.60    | 94.03                 |              |  |  |  |
| 0.26115                              | 0.06820              | 204.24         | 3.98    | 98.01                 |              |  |  |  |
| 0.18477                              | 0.03414              | 102.24         | 1.99    | 100.00                |              |  |  |  |
| Total                                | 1.71429              | 5133.92        | 100.00  |                       |              |  |  |  |

#### Summary table:

## MCA EXAMPLE (3)

# Most influential column points (loadings):

| Column Coordinates |         |         |  |  |  |
|--------------------|---------|---------|--|--|--|
|                    | Dim1    | Dim2    |  |  |  |
| American           | -0.4035 | 0.8129  |  |  |  |
| European           | -0.0568 | -0.5552 |  |  |  |
| Japanese           | 0.3208  | -0.4678 |  |  |  |
| Large              | -0.6949 | 1.5666  |  |  |  |
| Medium             | -0.2562 | 0.0965  |  |  |  |
| Small              | 0.4326  | -0.5258 |  |  |  |
| Family             | -0.4201 | 0.3602  |  |  |  |
| Sporty             | 0.6604  | -0.6696 |  |  |  |
| Work               | 0.0575  | 0.1539  |  |  |  |
| 1 Income           | 0.8251  | 0.5472  |  |  |  |
| 2 Incomes          | -0.6727 | -0.4461 |  |  |  |
| Own                | -0.3887 | -0.0943 |  |  |  |
| Rent               | 1.0225  | 0.2480  |  |  |  |
| Married            | -0.4169 | -0.7954 |  |  |  |
| Married with Kids  | -0.8200 | 0.3237  |  |  |  |
| Single             | 1.1461  | 0.2930  |  |  |  |
| Single with Kids   | 0.4373  | 0.8736  |  |  |  |
| Female             | -0.3365 | -0.2057 |  |  |  |
| Male               | 0.2710  | 0.1656  |  |  |  |

## MCA EXAMPLE (4)

20 😹 Large 15 -10 -Dimension 2 (1384%) ⇒ Single with Kids. \* American \* 1 Income 0.5 ... Family \* Married with Kids \* Single s⊧Male Work \* Med um. 0.0 \* Own \* Female 2 Incomes -0.5 Small Japanese Europear Sporty \* Married -10 --0.5 0.0 0.5 1.0 1.5 -1.0

MCA of Car Owners and Car Attributes

Burt table plot:

Dimension 1 (18.91%)

### PLOT OBSERVATIONS

#### Top-right quadrant:

 categories single, single with kids, 1 income, and renting a home are associated

#### Proceeding clockwise:

- the categories sporty, small, and Japanese are associated
- being married, owning your own home, and having two incomes are associated
- having children is associated with owning a large American family car

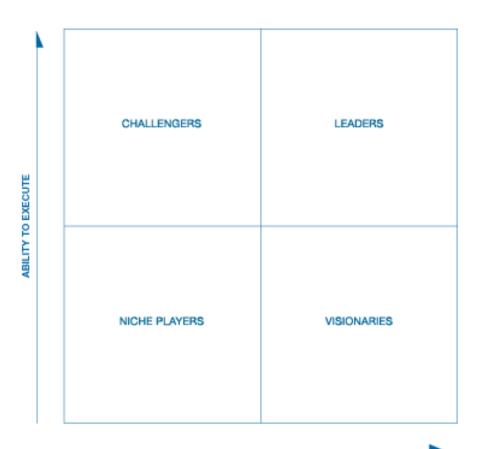
Such information could be used in market research to identify target audiences for advertisements

### GARTNER MAGIC QUADRANT

A Gartner Magic Quadrant is a culmination of research in a specific market, providing a wide-angle view of the relative positions of the market's competitors

This concept can be used for other dimension pairs as well

 essentially require to think of a segmentation of the 4 quadrants

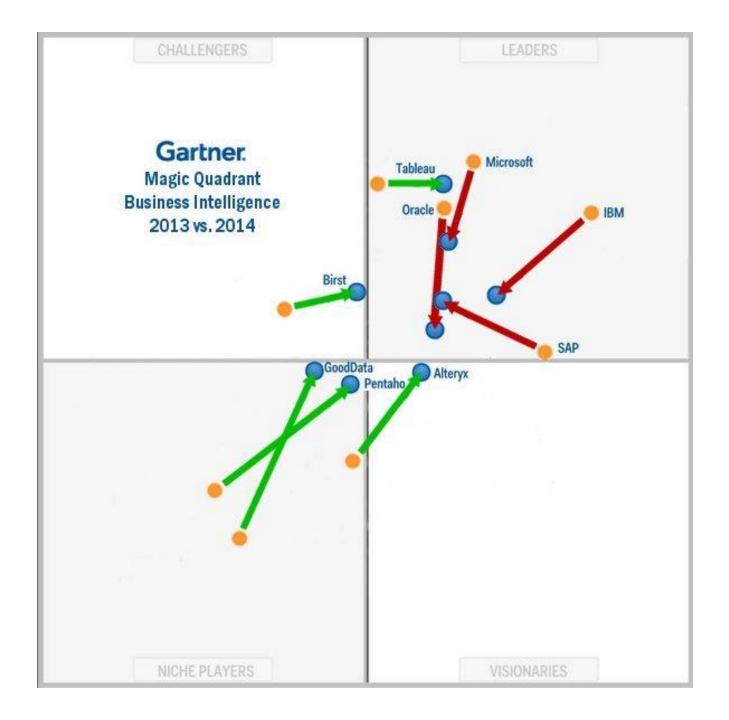


COMPLETENESS OF VISION



Figure 1. Magic Quadrant for Business Intelligence and Analytics Platforms

Source: Gartner (February 2014)



### NOTES ON PROJECT #2

Submission site is not operational at this point

- turns out Blackboard supports peer review as well
- will use Blackboard for report and video only
- will use Google forms submission for source code

Video recording

- a good program is <u>Apowersoft Screen Recorder</u>
- captures screen and voice at the same time
- it's free for a version with sufficient capabilities