


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, data types  
3 Data sources and preparation  Project 1 out 
4 Data reduction, similarity & distance, data augmentation    
5 Dimension reduction    
6 Introduction to D3 

7 Visual communication using infographics 
8 Visual perception and cognition Project 2 out 
9 Visual design and aesthetic   

10 D3 hands-on presentation   
11 Cluster analysis   
12 Visual analytics tasks and design 
13 High-dimensional data VIS: linear projections Project 3 out 
14 High-dimensional data VIS: optimized layouts   
15 Visualization of spatial data  
16 Midterm  
17 Illumination and isosurface rendering  
18 Scientific visualization  
19 Non-photorealistic and illustrative rendering Project 4 out 
20 Midterm discussion   
21 Principles of interaction   
22 Visual analytics and the visual sense making process 
23 Visualization of graphs and hierarchies 
24 Visualization of time-varying and streaming data Project 5 out 
25 Maps 
26 Memorable visualizations, visual embellishments    
27 Evaluation and user studies   
28 Narrative visualization, storytelling, data journalism, XAI 



Feature vectors are typically high dimensional 

 this means, they have many elements  

 high dimensional space is tricky 

 most people do not understand it 

 why is that?  

 

 well, because you don’t learn to see high-D                                         

when your vision system develops  

 

Object permanence (Jean Piaget)  

 the ability to create mental pictures or remember objects and 

people you have previously seen  

 thought to be a vital precursor to creativity and abstract thinking 



The curse of dimensionality  

As n  ∞  

 Cube: side length l, diagonal d, volume V 

 V  ∞ for l > 1 

 V  0 for l < 1 

 V = 0 for l = 1 

 d  ∞ 

and very sparse 

 

  

and not here 

most points are here 



Essentially hypercube is like a “hedgehog”   

 

 

  



Points are all at about the same distance from one another 

 concentration of distances 

 fundamental equation (Bellman, ‘61) 

 

 

 

 so as n increases, it is impossible to distinguish two points by 

(Euclidian) distance  

• unless these points are in the same cluster of points 
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Space gets extremely sparse  

 with every extra dimension points get pulled apart further 

 distances become meaningless 

 

 

 

 

 

 

 

 

 

 



Space gets extremely sparse  

 with every extra dimension points get pulled apart further 

 distances become meaningless 

1D – points are very close 

2D – points spread apart 

3D – getting even sparser 
 
4D, 5D, … – sparseness grows further  



Indexing (and storage) also gets very expensive 

 exponential growth in the number of dimensions 

 

 

 

 

 

 

 

 

 

 4D: 65k cells   5D: 1M cells   6D: 16M cells    7D: 268M cells 

 keep a keen eye on storage complexity   

16 cells  

162 = 56 cells 163 = 4,096 cells 





 

 

 

 

 

 

 

 

 

 

The N=7 data axes are arranged side by side  
 in parallel 



 

 

 

 

 

 

 

 

 

 

Hard to see the individual cars?  
 what can we do?  



 

 

 

 

 

 

 

 

 

 

Grouping the cars into sub-populations 
 a clustering operation 

 an be automated or interactive (put the user in charge) 



 

 

 

 

 

 

 

 

 

Computes the mean and superimposes it onto the lines  

 allows one to see trends  



PC With Illustrative Abstraction 

individual polylines 



PC With Illustrative Abstraction 

completely abstracted away 



PC With Illustrative Abstraction 

blended partially 



PC With Illustrative Abstraction 

all put together – three clusters 

[McDonnell and Mueller, 2008] 



Interaction is Key 



correlation                    r=-1.0                               r=0                                       r=1.0  



correlation 

# points 



correlation 

# points 

Li et al. found that twice as many correlation levels can be distinguished with scatterplots 
Information Visualization Vol. 9, 1, 13 – 30 



There are n! ways to order the n dimensions  

 how many orderings for 7 dimensions? 

 5,040  

 but since can see relationships across 3 axes a better estimate is 

n!/((n-3)! 3!) = 35 

 still a lot of axes orderings to try out  we need help 



The below is not an optimal ordering, why?  

  



This ordering is better, why? 

 

 

 

 

 

 

 

 because it doesn’t waste axis pairs on uncorrelated relationships 

 only region 3 is uncorrelated 

 regions 1 and 2 are subspace clusters  

1 

2 
attribute  
correlation plot 



For each axis pair, compute correlation 

 

Compute optimal-cost path across all attributes 

 

What algorithm does this?  

 Traveling Salesman Solver 

 

 

 

Do the same for                                                                                       

the correlation plot 

 

 

 



Developed by [Kosara et al. TVCG, 2006] 

 

Parallel coordinates for categorical data 

 for example, census and survey data, inventory, etc.  

 data that can be summed up in a cross-tabulation 

 

Example 

 Titanic dataset 

 what can we see here? 







Scene:  

 a meeting of sales executives of a large corporation, Vandelay 

Industries 

 

Mission: 

 review the strategies of their various sales teams 

 

Evidence: 

 data of three sales teams with a couple of hundred sales people 

in each team 

  



Meet Kate, a sales analyst in the meeting room: 
 

“OK…let’s see, cost/won lead is nearby and it has a positive correlation 

with #opportunities but also a negative correlation with #won leads” 

Kate 



“Let’s go and make a revealing route!” 

 she uses the mouse and designs the route shown 

 she starts explaining the data like a story ...  



 

 

 

 

 

Kate notices something else: 

 now looking at the red team 

 there seems to be a spread in effectiveness among the team 

 the team splits into three distinct groups 

She recommends: “Maybe fire the least effective group or at 

least retrain them” 

 

 

 

 

 

 

 

 

 



Projection of the data items into a bivariate basis of axes 



How does 2D projection work in practice? 

 N-dimensional point x ={x1. x2, x3, … xN}  

 a basis of two orthogonal axis vectors defined in N-D space  

                a = {a1. a2, a3, … aN} 

                b = {b1. b2, b3, … bN}  

 a projection {xa, xb} of x into the 2D basis spanned by {a, b} is:  

                xa = a · xT   

                xb = b · xT  

        where · is the dot product, T is the transpose 

a a 

b b 



Projection causes inaccuracies 

 close neighbors in the projections may not be close neighbors in 

the original higher-dimensional space 

 this is called projection ambiguity  

a a 

b b 



Appropriate for the display of bivariate relationships 



What to do when there are more than two variables? 

 arrange multivariate relationships into scatterplot matrices 

 not overly intuitive to perceive multivariate relationships 





Scatterplot version of parallel 

coordinates 

 distributes n(n-1) bivariate 

relationships over a set of tiles 

 for n=4 get 16 tiles 

 can use n(n-1)/2 tiles 

 

For even moderately large n: 

 there will be too many tiles 

 

Which plots to select?  

 plots that show correlations well 

 plots that separate clusters well 

 



Several metrics, a good one is Distance Consistency (DSC) 

 

 

 

 

 

 

 

 

 measures how “pure” a cluster is 

 pick the views with highest normalized DSC 

 

 

 

 

 

 

 

 

 

 

 

M. Sips et al., Computer Graphics Forum, 28(3): 831–838, 2009 

bad 

OK 

= 



Plots data points and dimension axes into a single visualization 

 uses first two PCA vectors as the basis to project into  

 find plot coordinates [x] [y] 

          for data points: [PCA1 · data vector] [PCA2 · data vector] 

          for dimension axes: [PCA1[dimension]] [PCA2[dimension]] 

 

 

 

 

 

 

 scatter plot biplot 



See data distributions into the context of their attributes 



See data points into the context of their attributes 

 



Do be aware that the projections may not be fully accurate 

 you are projecting N-D into 2D by a linear transformation 

 if there are more than 2 significant PCA vectors then some 

variability will be lost and won’t be visualized 

 remote data points might project into nearby plot locations 

suggesting false relationships  projection ambiguity 

 always check out the PCA scree plot to gauge accuracy  

 

 



Also called multivariate scatterplot 

 biplot-axes length vis replaced by graphical design 

 less cluttered view  

 but there’s more to this ….. 













Coordinate system based on axes positioned in a star 

 a point P is vector sum of all axis coordinates  

Interactions 

 axis rescaling, rotation 

 reveal correlations 

 resolve plotting ambiguities 
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[E. Kandogan  SIGKDD 2001] 



Similar to Star Coordinates 

 uses a spring model  

 difference is normalization by sum of values 

  

 

 

[P. Hoffman et al.   VIS 1997] 
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Figure by: Rubio-Sanchez et al.   TVCG 2015 



Optimize 

 attribute placement on circle using TSP  

 sample locations iteratively using similarity constraints  

 

standard RadViz 

[Cheng and Mueller, Pacific Vis 2015] 



Coordinate system based on axes positioned in a “star”, or 

circular pattern 

 a point P is plotted as a vector sum of all axis coordinates  

 



Operations defined on Star Coords 

 scaling changes contribution to 

resulting visualization 

 axis rotation can visualize correlations  

 also used to reduce projection 

ambiguities 

 

Similar paradigm: RadViz 

 



All of these scatterplot displays share the following 
characteristics 

 allow users to see the data points in the context of the variables 

 but can suffer from projection ambiguity 

 some offer interaction to resolve some of these shortcomings  

 but interaction can be tedious  

 

Are there visualization paradigms that can overcome these 
problems? 

 yes, algorithms that optimize the layout to preserve distances or 
similarities in high-dimensional space 

 these are also called lower-dimensional embeddings 

 very popular is MDS (Multi-dimensional scaling) 



MDS is for irregular structures 
 scattered points in high-dimensions (N-D) 

 adjacency matrices 

 

Maps the distances between observations from N-D into low-
D (say 2D) 

 attempts to ensure that differences between pairs of points in this 
reduced space match as closely as possible 

 

The input to MDS is a distance (similarity) matrix  
 actually, you use the dissimilarity matrix because you want similar 

points mapped closely  

 dissimilar point pairs will have greater values and map father 
apart  





MDS turns a distance matrix into a network or point cloud  
 correlation, cosine, Euclidian, and so on 

 

Suppose you know a matrix of distances among cities 

 

 

 

 

 

 

 

Chicago Raleigh Boston Seattle S.F. Austin Orlando 

Chicago 0 

Raleigh 641 0 

Boston 851 608 0 

Seattle 1733 2363 2488 0 

S.F. 1855 2406 2696 684 0 

Austin 972 1167 1691 1764 1495 0 

Orlando 994 520 1105 2565 2458 1015 0 











𝐸 = 𝐷𝑖𝑗 − 𝑑𝑖𝑗
2

𝑁

𝑖<𝑗

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Spring-like system 

 insert springs within each node 

 the length of the spring encodes the desired node distance 

 start at an initial configuration 

 iteratively move nodes until an energy minimum is reached 

 



Distance (similarity) metric  

 Euclidian distance (best for data) 

 Cosine distance (best for data) 

 |1-correlation| distance (best for attributes) 

 use 1-correlation to move correlated attribute points closer 

 use | | if you do not care about positive or negative correlations 

 





by: [J. Tenenbaum, V. de Silva, J. Langford, Science, 2000] 

 

 

 

 

 

 

Tries to unwrap a high-dimensional surface (A)  manifold 
 noisy points could be averaged first and projected onto the manifold 

 

Algorithm 
 construct neighborhood graph G  (B) 

 for each pair of points in G compute the shortest path distances  geodesic 
distances 

 fill similarity matrix with these geodesic distances 

 embed (layout) in low-D (2D) with MDS  (C) 

 visualize it like an MDS layout 

 



t-Distributed Stochastic Neighbor Embedding  

 innovated by [l. van der Maaten and G. Hinton, 2008] 

 

Works as a two-stage approach 

1. Construct a probability distribution over pairs of high-D points 

based on similarity 

2. Define a similar probability 

       distribution over the points  

       in the low-D map 

 

 

                               



Introduced by [T. Kohonen et al. 1996]  

 unsupervised learning and clustering algorithm 

 has advantages compared to hierarchical clustering 

 often realized as an artificial neural network 

 

SOMs group the data  

 perform a nonlinear projection from N-dimensional input space 

onto two-dimensional visualization space 

 provide a useful topological arrangement of information objects 

in order to display clusters of similar objects in information space 

 



Map a dataset of 3D color vectors into a 2D plane 

 assume you have an image with 5 colors  

 want to see how many there are of each 

 compute an SOM of the color vectors  

 

SOM 



Create array and connect all elements to the N input vector 
dimensions  

 shown here: 2D vector with 44 elements   

 initialize weights  

 

For each input vector chosen at random 
 find node with weights most like the input vector 

 call that node the Best Matching Unit (BMU) 

 find nodes within neighborhood radius r of BMU  

• initially r is chosen as the radius of the lattice 

• diminishes at each time step 

 adjust the weights of the neighboring nodes to                             
make them more like the input vector 

• the closer a node is to the BMU, the more its weights get altered 





Height represents density or number of documents in the region 

Invented at Pacific Northwest National Lab (PNNL) 



You will need to use correspondence analysis (CA) 

 CA is PCA for categorical variables 

 related to factor analysis 

 

Makes use of the 2 test  

 what’s 2 ? 



A chi-square test is used to investigate relationships 

Relationships between categorical, or nominal-scale, variables 
representing attributes of people, interaction techniques, 
systems, etc. 

Data organized in a contingency table – cross tabulation 
containing counts (frequency data) for number of 
observations in each category 

A chi-square test compares the observed values against 
expected values 

Expected values assume “no difference” 

Research question:  
 Do males and females differ in their method of scrolling on desktop 

systems? (next slide) 

78 



Chi-square – Example #1 

79 

MW = mouse wheel 

CD = clicking, dragging 

KB = keyboard 



Chi-square – Example #1 

80 

2 = 1.462 

Significant if it 

exceeds critical value  

(next slide) 

56.0∙49.0/101=27.2 

(Observed-Expected)2/Expected = (28-27.2)2/27.2 



Decide in advance on alpha (typically .05) 

Degrees of freedom 

 df = (r – 1)(c – 1) = (2 – 1)(3 – 1) = 2 

 r = number of rows, c = number of columns 

81 

2 = 1.462 (< 5.99 not significant)  



Example: 

 

 

 

 

 

 

There are two high-D spaces 

 4D (column) space spanned by smoking habits – plot staff group 

 5D (row) space spanned by staff group – plot smoking habits 

Are these two spaces (the rows and columns) independent ? 

 this occurs when the 2  statistics of the table is insignificant 

 

 

 

 

 

 

 

 

 

more info 

http://www.uta.edu/faculty/sawasthi/Statistics/stcoran.html


Let’s do some plotting 

 compute distance matrix of the rows CCT 

 compute Eigenvector matrix U and the Eigenvalue matrix D 

 sort eigenvectors by values, pick two major vectors, create 2D plot 

                                                            -- senior employees most similar 

                                                                 to secretaries 

                                                                 



Next:  

 compute distance matrix of the columns CTC 

 compute Eigenvector matrix V (gives the same Eigenvalue matrix D) 

 sort eigenvectors by value 

 pick two major vectors 

 create 2D plot of smoking categories 

 

Following (next slide): 

 combine the plots of U and V        

 if the 2  statistics was significant we should see some dependencies  



 

 

 

 

 

 

 

 

 

 

Interpretation sample (using the 2  frequentist mindset) 

 relatively speaking, there are more non-smoking senior employees 



 

 

 

 

 

 

 

 

 

Plot would now show 193 cases and 9 variables   



Extension where there are more than 2 categorical variables 

 

 

 

 

 

 

 

 

 

Let’s call it matrix X 

 

 

 

 

 

 



Compute X’X to get the Burt Table 

 

 

 

 

 

 

 

 

Compute Eigenvectors and Eigenvalues 
 keep top two Eigenvectors/values 

 visualize the attribute loadings of these two Eigenvectors into the 
Burt table plot  (the loadings are the coordinates) 



Results of a survey of car owners and car attributes 

 

 

 

 

 

 

 

 

 

 

 more info see here 

https://v8doc.sas.com/sashtml/stat/chap24/sect27.htm


 

 

 

 

 

Summary table: 



 

 

 

 

Most influential column points 

(loadings): 



 

 

 

 

Burt table plot: 



Top-right quadrant:  

 categories single, single with kids, 1 income, and renting a home 

are associated 

 

Proceeding clockwise: 

 the categories sporty, small, and Japanese are associated  

 being married, owning your own home, and having two incomes 

are associated  

 having children is associated with owning a large American family 

car 

 

Such information could be used in market research to identify 

target audiences for advertisements 

 



A Gartner Magic Quadrant is 
a culmination of research in a 
specific market, providing a 
wide-angle view of the 
relative positions of the 
market's competitors 

 

 

This concept can be used for 
other dimension pairs as well 

 essentially require to think 
of a segmentation of the 4 
quadrants 







Submission site is not operational at this point 

 turns out Blackboard supports peer review as well 

 will use Blackboard for report and video only 

 will use Google forms submission for source code 

 

Video recording 

 a good program is Apowersoft Screen Recorder 

 captures screen and voice at the same time 

 it’s free for a version with sufficient capabilities  

 

https://www.apowersoft.com/free-online-screen-recorder
https://www.apowersoft.com/free-online-screen-recorder
https://www.apowersoft.com/free-online-screen-recorder

